The inverse moment for widely orthant dependent random variables

نویسندگان

  • Xiaoqin Li
  • Xi Liu
  • Wenzhi Yang
  • Shuhe Hu
چکیده

In this paper, we investigate approximations of the inverse moment model by widely orthant dependent (WOD) random variables. Let {Zn,n≥ 1} be a sequence of nonnegative WOD random variables, and {wni , 1≤ i≤ n,n≥ 1} be a triangular array of nonnegative nonrandom weights. If the first moment is finite, then E(a + ∑n i=1wniZi) –α ∼ (a +∑ni=1wniEZi)–α for all constants a > 0 and α > 0. If the rth moment (r > 2) is finite, then the convergence rate is presented as E(a+ ∑n i=1 wniZi) –α (a+ ∑n i=1 wniEZi) –α – 1 = O( 1 (a+ ∑n i=1 wniEZi ) 1–2β/r ), where β ≥ 0 and 2β/r < 1. Finally, some simulations illustrate the results. We generalize some corresponding results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Convergence of Weighted Sums for Negatively Orthant Dependent Random Variables

We discuss in this paper the strong convergence for weighted sums of negatively orthant dependent (NOD) random variables by generalized Gaussian techniques. As a corollary, a Cesaro law of large numbers of i.i.d. random variables is extended in NOD setting by generalized Gaussian techniques.

متن کامل

Rosenthal’s Type Inequalities for Negatively Orthant Dependent Random Variables

In this paper, we obtain some Rosenthal’s type inequalities for negatively orthant dependent (NOD) random variables.

متن کامل

Precise large deviations for widely orthant dependent random variables with different distributions

Let [Formula: see text] be a sequence of random variables with different distributions [Formula: see text]. The partial sums are denoted by [Formula: see text], [Formula: see text]. This paper mainly investigates the precise large deviations of [Formula: see text], for the widely orthant dependent random variables [Formula: see text]. Under some mild conditions, the lower and upper bounds of th...

متن کامل

Acceptable random variables in non-commutative probability spaces

Acceptable random variables are defined in noncommutative (quantum) probability spaces and some of probability inequalities for these classes  are obtained. These results are a generalization of negatively orthant dependent random variables in probability theory. Furthermore, the obtained results can be used for random matrices.

متن کامل

Some strong limit theorems for arrays of rowwise negatively orthant-dependent random variables

Correspondence: [email protected] School of Mathematical Science, Anhui University, Hefei 230039, China Abstract In this article, the strong limit theorems for arrays of rowwise negatively orthantdependent random variables are studied. Some sufficient conditions for strong law of large numbers for an array of rowwise negatively orthant-dependent random variables without assumptions of identical di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016